Solar energy is clean and renewable.
Solar architecture is designing buildings to use the sun's heat and light to maximum advantage and minimum disadvantage, and especially refers to harnessing solar power. It is related to the fields of optics, thermics, electronics and materials science. Both PlusEnergy and Passive house strategies are involved.
The use of flexible thin-film photovoltaic modules provides fluid integration with steel Roofing material profiles, enhancing the building's design. Orienting a building to the sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air also constitute solar architecture.
Improvements in solar architecture have been limited by the rigidity and weight of standard solar power panels. The continued development of photovoltaic (PV) thin film solar has provided a lightweight yet robust vehicle to harness solar energy to reduce a building's impact on the environment.
From this point on, most civilizations have oriented their structures to provide shade in the summer and heating in the winter. The Romans improved on the Greeks' design by covering the southern-facing windows with different types of transparent materials.
Another simpler example of early solar architecture is the cave dwellings in the southwestern regions of North America. Much like the Greek and Roman buildings, the Cliff dwelling in which the indigenous people of this region built their homes were oriented towards the south with an overhang to shade them from the midday sun during the summer months and capture as much of the solar energy during the winter as possible. Seven ancient wonders of Greek design and technology Ecoist. Retrieved April 19, 2015.
Active solar architecture involves the moving of heat and/or coolness between a temporary heat storage medium and a building, typically in response to a thermostat's call for heat or coolness within the building. While this principle sounds useful in theory, significant engineering problems have thwarted almost all active solar architecture in practice. The most common form of active solar architecture, rock bed storage with air as a heat transfer medium, usually grew toxic mold in the rock bed which was blown into houses, along with dust and radon in some cases.
A more complex and modern incarnation of solar architecture was introduced in 1954 with the invention of the Solar cell by Bell Labs. Early cells were extremely inefficient and therefore not widely used, but throughout the years government and private research has improved the efficiency to a point where it is now a viable source of energy.
Universities were some of the first buildings to embrace the idea of solar energy. In 1973, the University of Delaware built Solar One, which was one of the world's first solar-powered houses.
As photovoltaic technologies keep advancing, solar architecture becomes easier to accomplish. In 1998 Guha Subhendu developed photovoltaic shingles, and recently a company called Oxford Photovoltaics has developed perovskite solar cells that are thin enough to incorporate into windows. The History of Solar (2012, March 8) U.S. Department of Energy. Retrieved March 26, 2015. Although the windows are not scaled to a size that can be taken advantage of on a commercial level yet, the company believes that the outlook is promising. Our Vision (2015, January 1) Oxford PV. Retrieved March 29, 2015.
The greenhouse can be used to grow plants in the winter, to grow tropical plants, as a terrarium for reptiles or insects, or simply for air comfort. It must be ventilated, but not too much, otherwise the convection will make the inside colder, losing the desired effect. The greenhouse may be combined with heat storage or an opaque mask.
The use of intermediate solar heat systems like evacuated tubes, compound parabolic, and parabolic trough, is discussed as they correspond to specific, intermediate needs. A customer who wants a cheap system will prefer the photothermic, giving 80 °C (353 K) hot water with 70–85% efficiency. A customer who wants high temperatures will prefer the solar parabola, giving 200 °C (573 K) with 70–85% efficiency.
Do it yourself photothermic modules are cheaper and can use a spiral pipe, with hot water coming from the center of the module. Other geometries exist, like serpentine or quadrangular.
If on a flat roof, a mirror can be placed in front of the photothermic module to give it more sunlight.
The photothermic module has become popular in Mediterranean countries, with Greece and Spain counting with 30–40% of homes equipped with this system, and becoming part of the landscape.
Photovoltaic tiles combine the useful to the pleasant by providing tile-like photovoltaic surfaces.
A pragmatic rule is to put the photovoltaic surface facing the sunny cardinal point, with a latitude-equal angle to the horizontal. For example, if the house is 33° South, the photovoltaic surface should face the north with 33° to the horizontal. From this rule comes a general standard of roof angle, that is the norm in solar architecture.
A thick ground of rock in a greenhouse will keep some heat through the night. The rock will absorb heat in the day and emit it in the night. Water has the best thermal capacity for a common material and remains a sure value.
Grid-connected systems can use interseasonal storage thanks to pumped-storage hydroelectricity. An innovative storage method, compressed air energy storage, is also being studied, and may be applied at the scale of a region or a home, whether a cave or a tank is used to store the compressed air.
Tracking requires electronics and automatics. There are two ways to let the system know where the Sun is: instrumental and theoretical. The instrumental method uses captors of light to detect the Sun's position. The theoretical method uses astronomical formulas to know the Sun's place. One or two axis motors will make the solar system rotate to face the Sun and catch more of its Sunlight.
A photovoltaic or photothermic module can gain more than 50% of production, thanks to a tracker system.
As a mask, any opaque material is fine. A curtain, a cliff, or a wall can be solar masks. If a leafy tree is put in front of a greenhouse, it may hide the greenhouse in the summer, and let the sunlight enter in the winter, when the leaves have fallen. The shadows will not work the same according to the season. Using the seasonal change to get shadow in the summer, light in the winter, is a general rule for a solar mask.
The solar chimney may be coupled with a badgir or a wood chimney for stronger effect.
The solar parabola can also be used for industrial building. The Odeillo solar furnace, one of the largest solar parabola in the world, concentrates the sunlight 10,000 times and reaches temperatures above 3,200 K. No material resists, even diamond melts. It opens the vision of a futuristic metallurgy, using a clean and renewable source of energy.
Although it is not yet completed, the Solar City Tower in Rio de Janeiro is another example of what solar architecture might look like in the future. It is a power plant that generates energy for the city during the day while also pumping water to the top of the structure. At night, when the sun is not shining, the water will be released to run over that will continue to generate electricity. It was set to be revealed at the 2016 Olympic Games in Rio, although the project is still in the proposal phase.Satre-Meloy, Aven Five Jaw Dropping Solar Architecture Projects. (2014, February 25) Mosaic Blog. Retrieved March 27, 2015.
Another criticism of installing solar panels is their upfront cost. According to energyinfomative.org, the average cost for a residential solar system is between $15,000 and $40,000 (USD), and about $7 per watt.Maehlum, M. (2015, March 23). How Much Do Solar Panels Cost Energy Informative. Retrieved April 19, 2015. In the article, it says that at today's rates, it would take 10 years to pay off an average system. As a solar panel may last more than 20 years, in the end, it becomes a benefit.
|
|